Caratteristiche e vantaggi principali

Il Sistema Atlas è un dispositivo impiantabile per lo scarico articolare  pensato per i pazienti che soffrono di artrosi mediale del ginocchio

Posizionato sottocute ed esternamente all’articolazione, il Sistema Atlas integra biomateriali innovativi per garantire una riduzione del sovraccarico, clinicamente efficace, fino a 13 kg. Il Sistema Atlas assorbe solo il carico articolare in eccesso senza trasferirlo sui comparti sani dell’articolazione.

atlas_video_teaser
Key benefits

Atlas materials

Tecnica chirurgica semplificata

Il Sistema Atlas presenta una tecnica chirurgica semplificata, basata sull’uso di reperi anatomici, che permette al chirurgo di confermare visivamente il corretto funzionamento del dispositivo durante la procedura.

Posizionamento dell’impianto di prova e valutazione funzionale

ILLUSTRATION 1

Identificare l’epicondilo mediale

ILLUSTRATION 2

Identificare il bordo mediale del piatto tibiale

ILLUSTRATION 3

Selezionare la lunghezza dell’ammortizzatore
(in varo)

ILLUSTRATION 4

Determinare il punto di fissaggio tibiale

ILLUSTRATION 5

Introdurre l’impianto di prova e confermarne il corretto funzionamento

Posizionamento dell’impianto definitivo

ILLUSTRATION 6

Posizionare i fili guida

ILLUSTRATION 7

Introdurre l’impianto definitivo

ILLUSTRATION 8

Verificare che l’impianto si muova liberamente e funzioni correttamente

Conferma visiva intraoperatoria del corretto funzionamento, dall’estensione completa alla flessione completa (1-2)

Robustezza comprovata

Il sistema Atlas ha superato con successo rigorosi test di robustezza, tra cui test di uso simulato, test di carico e test di biocompatibilità dei materiali.

BIBLIOGRAFIA

1. Escobar A, Quintana JM, Bilbao A, Arostegui I, Lafuente I, Vidaurreta I. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthritis Cartilage. 2007;15(3):273–80.

2. Brander VA. Predicting total knee replacement pain: a prospective, observation study. Clin Orthop Relat Res. 2003;416:27–36.

3. Tay KS, Lo NN, Yeo SJ, Chia S, Tay DKJ, Chin PL. Revision total knee arthroplasty: causes and outcomes. Ann Acad Med Singapore. 2013;42(4):178–83.

4. Kostecki K. PEEK usage climbs for devices. Med Des. 2011. Available from: http://medicaldesign.com/materials/peek-usage-climbs-devices. Accessed July 2, 2014.

5. Scholes SC, Unsworth A. The wear properties of CFR-PEEK-OPTIMA articulating against ceramic assessed on a multidirectional pin-on-pin machine. Proc Inst Mech Eng H. 2007;221(3):281–9.

6. Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20(1):163–70.

7. Scholes SC, Unsworth A. Pitch-based carbon-fibre-reinforced poly(ether-ether-ketone) OPTIMA® assessed as a bearing material in a mobile bearing unicondylar knee joint. Proc Inst Mech Eng H. 2009;223(1):13–25.

8. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima-A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

9. Nakahara I, Takao M, Bandoh S, Bertollo N, Walsk WR, Sugano N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res. 2013;31(3):485–92.

10. Brockett CL, John G, Williams S, Jin Z, Isacc GH, Fisher J. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements. J Biomed Mater Res B Appl Biomater. 2012;100(6):1459–65.

11. Grupp TM, Utzschneider S, Schröder C, et al. Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomater. 2010;6(9):3601–10.

12. MoxiMed. Absorber Durability, KineSpring PEEK System [Benchmark Report-Product Design]. Released January 2, 2013.

13. Anthrex Medizinische Instrumente GmbH. PEEKPower High Tibial Osteotomy Plate. [White Literature]; 2013.

14. Dickinson AS, Taylor AC, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J Biomech. 2012;45(4):719–23.

15. Latif AM, Mehats A, Elcocks M, Rushton N, Field RE, Jones E. Pre-clinical studies to validate the MITCH PCR Cup: a flexible and anatomically shaped acetabular component with novel bearing characteristics. J Mater Sci Mater Med. 2008;19(4):1729–36.

16. Maharaj G, Bleser S, Albert K, Lambert R, Jani S, Jamison R. Characterization of wear in composite material orthopedic implants. Part I: the composite trunnion/ceramic head interface. Biomed Mater Eng. 1994;4(3):193–8.

17. Pace N, Marinelli M, Spurio S. Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation. J Arthroplasty. 2008;23(1):151–5.

18. Scholes SC, Inman IA, Unsworth A, Jones E. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head. Proc Inst Mech Eng H. 2008;222(3):273–83.

19. Wang A, Lin R, Stark C, Dumbleton JH. Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements. Wear. 1999;225–9:724–7.

20. Brown SA, Hastings RS, Mason JJ, Moet A. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials. 1990;11(8):541–7.

21. Bruner HJ, Guan Y, Yoganandan N, Pintar FA, Maiman DJ, Slivka MA. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J Neurosurg Spine. 2010;13(6):766–72.

22. Cadossi, M., et al., Erratum: A comparison of hemiarthroplasty with a novel polycarbonate- urethane acetabular component for displaced intracapsular fractures of the femoral neck: A randomised controlled trial in elderly patients (Bone and Joint Journal (2013) 95-B (609–615)). (Journal Article).

23. Molinari, G.P., V. Galmarini, and R.M. Capelli, Tribofit hip system in the surgical treatment of the medial femoral neck fractures in elderly patients. 96th National Congress of the Italian Society of Orthopaedics and Traumatology Rimini Italy, 2011. 12(Journal Article): p. S110.

24. Moroni, A., et al., Cushion bearings versus large diameter head metal-on-metal bearings in total hip arthroplasty: A short-term metal ion study. Archives of orthopaedic and trauma surgery, 2012. 132(1): p. 123–129.

25. Siebert, W.E., et al., A two-year prospective and retrospective multi-center study of the TriboFit Hip System. Journal of long-term effects of medical implants, 2009. 19(2): p. 149–155.

26. Smith, R.A. and N.J. Hallab, In vitro macrophage response to polyethylene and polycarbonate-urethane particles. Journal of Biomedical Materials Research – Part A, 2010. 93(1): p. 347–355.

27. Wippermann, B., et al., Explantation and analysis of the first retrieved human acetabular cup made of polycarbonate urethane: A case report. Journal of long-term effects of medical implants, 2008. 18(1): p. 75–83.