Características y beneficios claves

El Sistema Atlas es un sistema de descarga de la articulación para pacientes con artrosis en el compartimento interno de la rodilla

El Sistema Atlas se coloca debajo de la piel, a lo largo de la articulación. Incorpora biomateriales avanzados diseñados para ofrecer una descarga de 13 kg. Un dato importante es que el Sistema Atlas amortigua el exceso de carga en la articulación en vez de transferir la carga a zonas sanas de la articulación.

atlas_video_teaser
Beneficios clave

Materiales del Sistema Atlas

Técnica quirúrgica sencilla

El Sistema Atlas representa una técnica quirúrgica sencilla basada en la propia anatomía del paciente, y permite que el cirujano confirme visualmente la descarga funcional de la articulación durante el procedimiento.

Colocación de la prueba y evaluación

ILLUSTRATION 1

Identificación del epicóndilo femoral medial

ILLUSTRATION 2

Identificación del borde medial de la tibia

ILLUSTRATION 3

Selección de la longitud del amortiguador
(varo)

ILLUSTRATION 4

Determinación del punto de fijación tibial

ILLUSTRATION 5

Introducción de la prueba y confirmación del buen funcionamiento

Colocación del dispositivo

ILLUSTRATION 6

Colocación de los pines guía

ILLUSTRATION 7

Introducción del implante definitivo

ILLUSTRATION 8

Confirmación de la libertad de movimiento y funcionamiento del dispositivo

Confirmación visual de la descarga funcional durante la intervención desde extensión máxima hasta flexión total (1-2)

Durabilidad probada

El Sistema Atlas ha sido sometido con éxito a rigurosas pruebas de durabilidad, incluida una prueba de uso simulado, pruebas de carga y pruebas de biocompatibilidad material.

References

1. Escobar A, Quintana JM, Bilbao A, Arostegui I, Lafuente I, Vidaurreta I. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthritis Cartilage. 2007;15(3):273–80.

2. Brander VA. Predicting total knee replacement pain: a prospective, observation study. Clin Orthop Relat Res. 2003;416:27–36.

3. Tay KS, Lo NN, Yeo SJ, Chia S, Tay DKJ, Chin PL. Revision total knee arthroplasty: causes and outcomes. Ann Acad Med Singapore. 2013;42(4):178–83.

4. Kostecki K. PEEK usage climbs for devices. Med Des. 2011. Available from: http://medicaldesign.com/materials/peek-usage-climbs-devices. Accessed July 2, 2014.

5. Scholes SC, Unsworth A. The wear properties of CFR-PEEK-OPTIMA articulating against ceramic assessed on a multidirectional pin-on-pin machine. Proc Inst Mech Eng H. 2007;221(3):281–9.

6. Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20(1):163–70.

7. Scholes SC, Unsworth A. Pitch-based carbon-fibre-reinforced poly(ether-ether-ketone) OPTIMA® assessed as a bearing material in a mobile bearing unicondylar knee joint. Proc Inst Mech Eng H. 2009;223(1):13–25.

8. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima-A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

9. Nakahara I, Takao M, Bandoh S, Bertollo N, Walsk WR, Sugano N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res. 2013;31(3):485–92.

10. Brockett CL, John G, Williams S, Jin Z, Isacc GH, Fisher J. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements. J Biomed Mater Res B Appl Biomater. 2012;100(6):1459–65.

11. Grupp TM, Utzschneider S, Schröder C, et al. Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomater. 2010;6(9):3601–10.

12. MoxiMed. Absorber Durability, KineSpring PEEK System [Benchmark Report-Product Design]. Released January 2, 2013.

13. Anthrex Medizinische Instrumente GmbH. PEEKPower High Tibial Osteotomy Plate. [White Literature]; 2013.

14. Dickinson AS, Taylor AC, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J Biomech. 2012;45(4):719–23.

15. Latif AM, Mehats A, Elcocks M, Rushton N, Field RE, Jones E. Pre-clinical studies to validate the MITCH PCR Cup: a flexible and anatomically shaped acetabular component with novel bearing characteristics. J Mater Sci Mater Med. 2008;19(4):1729–36.

16. Maharaj G, Bleser S, Albert K, Lambert R, Jani S, Jamison R. Characterization of wear in composite material orthopedic implants. Part I: the composite trunnion/ceramic head interface. Biomed Mater Eng. 1994;4(3):193–8.

17. Pace N, Marinelli M, Spurio S. Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation. J Arthroplasty. 2008;23(1):151–5.

18. Scholes SC, Inman IA, Unsworth A, Jones E. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head. Proc Inst Mech Eng H. 2008;222(3):273–83.

19. Wang A, Lin R, Stark C, Dumbleton JH. Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements. Wear. 1999;225–9:724–7.

20. Brown SA, Hastings RS, Mason JJ, Moet A. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials. 1990;11(8):541–7.

21. Bruner HJ, Guan Y, Yoganandan N, Pintar FA, Maiman DJ, Slivka MA. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J Neurosurg Spine. 2010;13(6):766–72.

22. Cadossi, M., et al., Erratum: A comparison of hemiarthroplasty with a novel polycarbonate- urethane acetabular component for displaced intracapsular fractures of the femoral neck: A randomised controlled trial in elderly patients (Bone and Joint Journal (2013) 95-B (609–615)). (Journal Article).

23. Molinari, G.P., V. Galmarini, and R.M. Capelli, Tribofit hip system in the surgical treatment of the medial femoral neck fractures in elderly patients. 96th National Congress of the Italian Society of Orthopaedics and Traumatology Rimini Italy, 2011. 12(Journal Article): p. S110.

24. Moroni, A., et al., Cushion bearings versus large diameter head metal-on-metal bearings in total hip arthroplasty: A short-term metal ion study. Archives of orthopaedic and trauma surgery, 2012. 132(1): p. 123–129.

25. Siebert, W.E., et al., A two-year prospective and retrospective multi-center study of the TriboFit Hip System. Journal of long-term effects of medical implants, 2009. 19(2): p. 149–155.

26. Smith, R.A. and N.J. Hallab, In vitro macrophage response to polyethylene and polycarbonate-urethane particles. Journal of Biomedical Materials Research – Part A, 2010. 93(1): p. 347–355.

27. Wippermann, B., et al., Explantation and analysis of the first retrieved human acetabular cup made of polycarbonate urethane: A case report. Journal of long-term effects of medical implants, 2008. 18(1): p. 75–83.