Główne cechy i zalety

System Atlas jest wszczepianym mechanizmem odciążającym staw u pacjentów z chorobą zwyrodnieniową przyśrodkowego przedziału kolana.

Umieszczony podskórnie obok stawu kolanowego, system Atlas zawiera nowoczesne biomateriały, przeznaczone do zapewnienia korzystnego klinicznie odciążenia o wielkości 13 kg. Co ważne, system Atlas absorbuje nadmiar obciążenia stawu, a nie przenosi go na zdrowe rejony stawu.

atlas_video_teaser
Key benefits

Atlas materials

Uproszczona technika operacyjna

System Atlas ma uproszczoną technikę operacyjną, zależną od anatomii pacjenta i umożliwia chirurgom wizualne potwierdzenie – w trakcie zabiegu – odciążenia stawów.

Zakładanie próbne i ocena

ILLUSTRATION 1

Identyfikowanie nadkłykcia ­przyśrodkowego kości udowej

ILLUSTRATION 2

Identyfikowanie krawędzi przyśrodkowej kości piszczelowej

ILLUSTRATION 3

Wybór długości absorbera
(szpotawość)

ILLUSTRATION 4

Ustalanie punktu mocowania piszczelowego

ILLUSTRATION 5

Wprowadzenie implantu próbnego i potwierdzenie działania implantu

Zakładanie urządzenia

ILLUSTRATION 6

Zakładanie drutów prowadnikowych

ILLUSTRATION 7

Zakładanie ostatecznego implantu

ILLUSTRATION 8

Potwierdzenie swobodnego ruchu i działania urządzenia

Wizualne potwierdzenie w trakcie operacji odciążenia podczas działania – od pełnego wyprostu do głębokiego zgięcia (1–2)

Sprawdzona trwałość

System Atlas pomyślnie przeszedł rygorystyczne badania wytrzymałości, w tym badania symulowanego stosowania, badania obciążeń i biozgodności materiałów.

MATERIAŁY ŹRÓDŁOWE

1. Escobar A, Quintana JM, Bilbao A, Arostegui I, Lafuente I, Vidaurreta I. Responsiveness and clinically important differences for the WOMAC and SF-36 after total knee replacement. Osteoarthritis Cartilage. 2007;15(3):273–80.

2. Brander VA. Predicting total knee replacement pain: a prospective, observation study. Clin Orthop Relat Res. 2003;416:27–36.

3. Tay KS, Lo NN, Yeo SJ, Chia S, Tay DKJ, Chin PL. Revision total knee arthroplasty: causes and outcomes. Ann Acad Med Singapore. 2013;42(4):178–83.

4. Kostecki K. PEEK usage climbs for devices. Med Des. 2011. Available from: http://medicaldesign.com/materials/peek-usage-climbs-devices. Accessed July 2, 2014.

5. Scholes SC, Unsworth A. The wear properties of CFR-PEEK-OPTIMA articulating against ceramic assessed on a multidirectional pin-on-pin machine. Proc Inst Mech Eng H. 2007;221(3):281–9.

6. Scholes SC, Unsworth A. Wear studies on the likely performance of CFR-PEEK/CoCrMo for use as artificial joint bearing materials. J Mater Sci Mater Med. 2009;20(1):163–70.

7. Scholes SC, Unsworth A. Pitch-based carbon-fibre-reinforced poly(ether-ether-ketone) OPTIMA® assessed as a bearing material in a mobile bearing unicondylar knee joint. Proc Inst Mech Eng H. 2009;223(1):13–25.

8. Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M. Carbon fiber reinforced PEEK Optima-A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater. 2013;17:221–8.

9. Nakahara I, Takao M, Bandoh S, Bertollo N, Walsk WR, Sugano N. In vivo implant fixation of carbon fiber-reinforced PEEK hip prostheses in an ovine model. J Orthop Res. 2013;31(3):485–92.

10. Brockett CL, John G, Williams S, Jin Z, Isacc GH, Fisher J. Wear of ceramic-on-carbon fiber-reinforced poly-ether ether ketone hip replacements. J Biomed Mater Res B Appl Biomater. 2012;100(6):1459–65.

11. Grupp TM, Utzschneider S, Schröder C, et al. Biotribology of alternative bearing materials for unicompartmental knee arthroplasty. Acta Biomater. 2010;6(9):3601–10.

12. MoxiMed. Absorber Durability, KineSpring PEEK System [Benchmark Report-Product Design]. Released January 2, 2013.

13. Anthrex Medizinische Instrumente GmbH. PEEKPower High Tibial Osteotomy Plate. [White Literature]; 2013.

14. Dickinson AS, Taylor AC, Browne M. The influence of acetabular cup material on pelvis cortex surface strains, measured using digital image correlation. J Biomech. 2012;45(4):719–23.

15. Latif AM, Mehats A, Elcocks M, Rushton N, Field RE, Jones E. Pre-clinical studies to validate the MITCH PCR Cup: a flexible and anatomically shaped acetabular component with novel bearing characteristics. J Mater Sci Mater Med. 2008;19(4):1729–36.

16. Maharaj G, Bleser S, Albert K, Lambert R, Jani S, Jamison R. Characterization of wear in composite material orthopedic implants. Part I: the composite trunnion/ceramic head interface. Biomed Mater Eng. 1994;4(3):193–8.

17. Pace N, Marinelli M, Spurio S. Technical and histologic analysis of a retrieved carbon fiber-reinforced poly-ether-ether-ketone composite alumina-bearing liner 28 months after implantation. J Arthroplasty. 2008;23(1):151–5.

18. Scholes SC, Inman IA, Unsworth A, Jones E. Tribological assessment of a flexible carbon-fibre-reinforced poly(ether-ether-ketone) acetabular cup articulating against an alumina femoral head. Proc Inst Mech Eng H. 2008;222(3):273–83.

19. Wang A, Lin R, Stark C, Dumbleton JH. Suitability and limitations of carbon fiber reinforced PEEK composites as bearing surfaces for total joint replacements. Wear. 1999;225–9:724–7.

20. Brown SA, Hastings RS, Mason JJ, Moet A. Characterization of short-fibre reinforced thermoplastics for fracture fixation devices. Biomaterials. 1990;11(8):541–7.

21. Bruner HJ, Guan Y, Yoganandan N, Pintar FA, Maiman DJ, Slivka MA. Biomechanics of polyaryletherketone rod composites and titanium rods for posterior lumbosacral instrumentation. Presented at the 2010 Joint Spine Section Meeting. Laboratory investigation. J Neurosurg Spine. 2010;13(6):766–72.

22. Cadossi, M., et al., Erratum: A comparison of hemiarthroplasty with a novel polycarbonate- urethane acetabular component for displaced intracapsular fractures of the femoral neck: A randomised controlled trial in elderly patients (Bone and Joint Journal (2013) 95-B (609–615)). (Journal Article).

23. Molinari, G.P., V. Galmarini, and R.M. Capelli, Tribofit hip system in the surgical treatment of the medial femoral neck fractures in elderly patients. 96th National Congress of the Italian Society of Orthopaedics and Traumatology Rimini Italy, 2011. 12(Journal Article): p. S110.

24. Moroni, A., et al., Cushion bearings versus large diameter head metal-on-metal bearings in total hip arthroplasty: A short-term metal ion study. Archives of orthopaedic and trauma surgery, 2012. 132(1): p. 123–129.

25. Siebert, W.E., et al., A two-year prospective and retrospective multi-center study of the TriboFit Hip System. Journal of long-term effects of medical implants, 2009. 19(2): p. 149–155.

26. Smith, R.A. and N.J. Hallab, In vitro macrophage response to polyethylene and polycarbonate-urethane particles. Journal of Biomedical Materials Research – Part A, 2010. 93(1): p. 347–355.

27. Wippermann, B., et al., Explantation and analysis of the first retrieved human acetabular cup made of polycarbonate urethane: A case report. Journal of long-term effects of medical implants, 2008. 18(1): p. 75–83.